Create Meta Object Adapters

Table of contents

I 1 11 0o 1T i o 1O 2
2 PreferenCeSMEtaOD]ECL.ooeeeeee et 2
w25 I o] 7o 1S (o @0 01 Lo L= SRS 2
2.2 ADSITAaCIM ELAODJECL.cecvece ettt s eenneeneenre s 3
2.3 SUINQ PrOPEIMIES......eivecie ettt e e e e e sseesteensasneesseennesneenseennens 3
2.4 NON-SIING PrOPEITIES. ...ttt 4
2.5 MetaObject-hased Properties........ oo e 5
S PreferenNCESMEIAKIT.ee et 7
4 AQVANCEA TYPES.....eeeireeiteeitie et e steeste e s ee e bt e s see e e e sseessteesseeeaseesbeessseeseeasseateesneeeseesneeeseens 9
5 Additional FULUIE FEEIUNES..........cceeieieieriesiesie ettt st sae e 9

LS 0161 [0 (== 9

Create Meta Object Adapters

1. Introduction

MetaObject adapters are the fundamental building blocks of all things meta. They are
responsible for adapting different types of regular objects to the MetaObject interface.
Meta-JB provides built in adapters for Java beans, standard hashmaps, etc. but it is frequently
necessary to adapt additional object types.

In this How-to | will write a MetaObject implementation for the Java preferences API. This
will involve creating a PreferencesM etaObject to implement the MetaObject interface and a
PreferencesMetaKit to provide more general access to the adapter layer.

2. PreferencesM etaObj ect

The PreferencesM etaObject will pass any calls to MetaObject.setProperty() and

M etaObject.getProperty() through to the underlying java.util.prefs.Preferences object that it
wraps. The MetaClass will be used as a template for how the types should be stored and
retrieved.

2.1. Thingsto Consider

The preferences API primarily deals with strings. MetaObjects allow any type of object to be
stored. To properly adapt things we'll need to come up with away of tranglating these values
in enough cases to make the utility useful.

Another issue will be nested meta-objects. When a MetaObject has a property that isalso a

M etaObject, the underlying values are wrapped and unwrapped as they are retrieved from or
stored into the property. A problem can occur when a MetaClass cannot be easily retrieved
for araw unwrapped object but it is being stored in a more generic type property. For
example, if Foo extends Bar but the property type can take any Foo. We won't know to create
another Bar when pulling the value back out because the Preferences object doesn't point us
back to the Bar meta-classin any way. An object like a Java bean usually has a direct
relationship to a MetaClass based on its Java type. The only thing we know about a
Preferences object isits location and tying class to location would limit the way the
preferences API could be used through the meta-object.

Thisisapretty common issue and usually a combination of object caching and specific
typing solvesiit. Fortunately, AbstractM etaObject handles most of the caching for us. Any
object that is set into the MetaObject and subsequently unwrapped will be remembered.

Create Meta Object Adapters

Since preferences are persistent there is the possibility that the PreferencesM etaObject will
need to wrap a Preferences node that it has never seen before. When specific type
information within the containing MetaObject isn't sufficient, we can provide some location
based meta-class resolution using regular expressions or something. Which is perhaps
beyond the scope of this article.

For this article, we'll assume that specific property typing is a sufficient solution.

2.2. AbstractM etaObject

For almost every meta-object implementation, AbstractMetaObject will be the way to go. For
all but the most complicated implementations, it is sufficient to simply override the abstract
setPropertyVaue() and getPropertyValue() methods to perform the proper access to the
underlying objects.

2.3. String Properties
|
To make things simple, welll start with String based properties since they require no
tranglation. Welll also skip worrying about the MetaKit implementation at the moment. More
on that later.

So, with that in mind our basic PreferencesM etaObject would look like:

public class PreferencesMet albj ect extends Abstract Met aCbj ect
private Preferences node;
publ i c PreferencesMetalhject(Preferences node, Metad ass nd ass)
super(mCl ass, null);

t hi s. node = node;

}

protected Object setPropertyValue(String nane, bject val ue)
{

/]l Get the old value to return when we're done
bj ect ol dval ue = node. get(nane, null);
node. put (nane, String.val ued (val ue));

return(ol dval ue);

}

prot ected Obj ect getPropertyValue(String nane)
{

Page 3

Create Meta Object Adapters

String val ue = node. get(nanme, null);

return(value);

public String toString()
return(getd ass().getName() + "[" + node + "]");

}

And that'sit. If all you wanted to do was access very flat data structures from a Preferences
node then we would be done. However, we want to really exploit everything we can.

2.4. Non-String Properties

The preferences API supports several additional types of attributes stored on a node:
« Boolean

o ByteArray
« Double

e Float

e Int
 Long

Other than Byte Array these values are pretty easy to support natively since the preferences
API ultimately stores them as strings anyway. This means that we only have to beef up our
getPropertyValue() method a bit.

protected Obj ect getPropertyValue(String nane)
{

/!l Find out what the raw type is
PropertyType type = get MetaCd ass(). get PropertyType(nane);
Cl ass base = type. get Based ass();

/1 Make sure we handle primtive types as their
/1 wrapper cousins. int -> Integer, etc..
base = Inspector.translateFronPrimtive(base);

/[l W use the raw string value to see if the property
/] even exists
String val ue = node. get(nanme, null);
if(value == null)
return(null);

i f(Bool ean. cl ass. i sAssi gnabl eFron(base))

return(Bool ean. val ue (node. get Bool ean(nane, false)));
el se if(Doubl e.class.isAssignabl eFronm(base))

return(new Doubl e(node. get Doubl e(nane, 0.0)));

Page 4

Create Meta Object Adapters

el se if(Float.class.isAssignabl eFrom base))
return(new Fl oat (node. get Fl oat (nane, 0.0f)));
el se if(Integer.class.isAssignabl eFron{ base))
return(new Integer(node.getlnt(nane, 0)));
el se i f(Long. cl ass. i sAssi gnabl eFron{ base))
return(new Long(node.getLong(name, 0)));
el se if(String.class.isAssignabl eFrom base))
return(value);

t hr ow new Unsupport edOper ati onExcepti on("Cannot convert string
to:" + base);

And with that we handle all types that a normal preferences node can handle as its attributes.
I'll discuss ways to potentially handle even more complex base typesin the
PreferencesMetaKit section. For now, let's figure out how to handle nested meta-object
properties.

2.5. M etaObject-based Properties
|
A Preferences node can have nested nodes. It would be convenient if we could automatically
wrap these nested nodes in an appropriate meta-class if they represent types that we know
about. It's easy to conceive of how getPropertyVaue() might work in this setting... indeed
AbstractMetaObject will even take care of the wrapping for usif we've built a proper
meta-kit.

It's the set operation that is alittle tricky in this case. Because of the way that preferences are
accessed, it really isn't possible for acaller to setup a PreferencesM etaObject and then passiit
directly to us... because for it to have a proper Preferences node it would already be our child.

If we're getting a MetaObject from some other implementation layer then it is possible that
we could copy all of the valuesinto alocal version. | think this goes beyond the scope of this
particular discussion. Besides, AbstractM etaObject should be handling most of that for us.

In the interest of illustration, | will put some stubs into the setPropertyVaue() method to
show how one might deal with thisin the normal case.

The stubbed setPropertyVaue() method:

protected Obj ect setPropertyValue(String nane, bject val ue)

PropertyType type = get Met aCl ass() . get PropertyType(nanme);
i f(type 1 nstanceof MetaC assPropertyType)

/1 The object passed
/1l internal value..
/1

i t he al ready unw apped
i
Since we can't graf

s
his case a Preferences object.

n
nt
t a new node onto the tree then

Page 5

Create Meta Object Adapters

/] there is really nothing that we can do easily so
/1 we'll ignore it.
return;

}

// Get the old value to return when we're done
nj ect ol dval ue = node. get(nane, null);

node. put (nane, String.val uet (val ue));

return(ol dval ue);
The getPropertyVaue() method modified to handle nested meta-objects:

prot ected Obj ect getPropertyValue(String nane)
{
/[l Find out what the raw type is
PropertyType type = get Met aC ass(). get PropertyType(nane);

i f(type instanceof MetaC assPropertyType)
{

/1 Abstract MetaCbject will wap this for us so our job
/Il is easy
return(node.node(nanme));

Cl ass base = type. get Based ass();

/1l Make sure we handle primtive types as their
/1 wrapper cousins. int -> Integer, etc.
base = Inspector.translateFronPrimtive(base);

/[l W use the raw string value to see if the property
/] even exists
String val ue = node. get(nanme, null);
i f(value == nul
return(null);

i f(Bool ean. cl ass. i sAssi gnabl eFrom(base))
return(Bool ean. val ueO (node. get Bool ean(nane, false)));
el se i f(Doubl e. cl ass. i sAssi gnabl eFrom(base))
return(new Doubl e(node. get Doubl e(nane, 0.0)));
el se if(Float.class.isAssignabl eFronm base))
return(new Fl oat (node. get Fl oat (nane, 0.0f)));
el se if(Integer.class.isAssignabl eFron{ base))
return(new Integer(node.getlnt(nane, 0)));
el se i f(Long.cl ass. i sAssi gnabl eFron{ base))
return(new Long(node.getlLong(name, 0)));
el se if(String.class.isAssignabl eFrom base))
return(value);

t hr ow new Unsupport edOper ati onExcepti on("Cannot convert string
to:" + base);

Page 6

Create Meta Object Adapters

}
And that's all thereistoit. Well, except that iswill throw a Null PointerException when
actually attempting to access meta-object typed properties. Here is where our null MetaKit
short-cut is coming back to haunt us. The meta-kit is crucial for automatically wrapping and
unwrapping MetaObjects of a particular implementation.

3. PreferencesM etaK it

A MetaKit iswhat provides access to the non-MetaObject specific parts of an adapter layer.
Today, this mostly includes the ability to wrap and unwrap object values and to otherwise
automatically determine certain things about an object in relation to an adapter layer.

MetaKit method summary:

« getinternalObject() - Unwraps a meta-object and returnsitsinternal real object. In our
case, thiswould be a Preferences node.

» getMetaClassForObject() - Attempts to find an appropriate MetaClass for agiven real
object. Without additional functionality, our meta-kit cannot really answer these
guestions.

« wrapObject() - The opposite of getlnternal Object(), given areal object it will wrapitina
MetaObject. Because the MetaClass is provided, our meta-kit can handle this method
even if the result may not be 100% accurate in all cases. (ie: The superclass problem
mentioned before.)

« getMetaObjectFactory() - Provides a factory that can create new instances of a
MetaObject for a given MetaClass. Our meta-kit cannot service these requests.

So, basically, we have to implement the getlnternal Object() and wrapObject() methods. I'll
also show how we can partially implement the getM etaClassForObject() method since we'll
have to do some caching of other things anyway.

MetaKits are encouraged to return the same wrapper object for specific real object instances.
In other words, when our PreferencesMetaKit is asked to wrap a Preferences node that we've
wrapped before then we should return the pre-existing MetaObject... assuming the
application is still holding areference to it somewhere. However, thisis not a requirement
and does complicate the code slightly by incorporating awrapper cache 1. For simplicity, this
meta-kit will not perform that resolution.

Our basic PreferencesMetaKit:

public class PreferencesMetaKit inplements MetaKit, Serializable

public static final PreferencesMetaKit DEFAULT _KIT = new

Page 7

Create Meta Object Adapters

Pref erencesMet aKit ();

public PreferencesMetakKit ()

{
}

public Object getlnternal Cbject(Metalbject object)

i f(!(object instanceof PreferencesMetaObject))
t hrow new Runti meException("Cbject is not a
Pref erencesMet aCbj ect. ");

return(((PreferencesMet aCbj ect)object). get PreferencesNode());

public MetaC ass get Met aCl assFor bj ect (Cbj ect obj ect,
Met aCl assRegi stry cl assRegi stry)

{

// W can't determine a type just fromthe object
return(null);

}

public MetaC ass get Met aCl assFor Obj ect (Obj ect obj ect)
{

// W can't deternmine a type just fromthe object
return(null);

}
public Metahject w apCbject(Cbject object, Metad ass nCl ass)

if(!(object instanceof Preferences)
t hrow new Runti meExcepti on("Unabl ed to wrap non-Preferences
obj ect:" + object);

return(new PreferencesMetaChj ect((Preferences)object, mCtass));

public Metabject Factory get Met albj ect Factory()

return(new PreferencesMet aCbj ect Factory());

private class PreferencesMetaObj ect Factory inplenments MetaObj ect Factory

{
public Metabject createMetalbject(Metad ass type)

t hr ow new Unsupport edOper at i onExcepti on("PreferenceMet albj ects
i nstanti ati on not supported.”);

}
}

It's pretty straight-forward. With afew modifications to our PreferencesM etaObject to
support referencing the meta-kit and to alow the kit to pull the preferences node:

Page 8

Create Meta Object Adapters

public PreferencesMetaCbj ect(Preferences node, Metad ass nC ass)

super (nCl ass, PreferencesMetaKit.DEFAULT KIT);
thi s. node = node;

}

prot ected Preferences getPreferencesNode()

return(node);

And we're in business. Now a MetaObject hierarchy can be imposed upon a preferences tree
which makes it available to al of the other Meta-JB features.

4. Advanced Types

Hereiswhere | would discuss extending the above to handle list based properties. I'm going
to wait a bit for that.

5. Additional Future Features

Add an aternate constructor that allows the caller to specify akey in the preferences tree.
This might make it easier to instantiate PreferencesM etaObjects right from XML.
Support for Propertylnfo default values. It would be easy to retrieve these and pass the
value to the call to the preferences node.

A key to MetaClass mapping registry for the PreferencesMetaKit so that it could guess at
MetaClasses for different preferences nodes.

6. Footnotes

|

A MetaKit, when possible, should attempt to return the same MetaObject instance for the
same real object instance. In other words, repeated calls to wrapObject() should return the
same MetaObject instance. The reason for thisis ssimple.

In some underlying implementations the real objects can reference one another. If Object A
references Object C and Object B also references Object C then when possible a similar

M etaObject instance relationship should be maintained so that Object C is always wrapped
by the same MetaObject instance.

In the case of PreferencesMetaKit, it would seem like it isn't specifically necessary. There

Page 9

Create Meta Object Adapters

will only be one way to access any given Preferences node from another node. However, if
Object A references Object B which then references Object C then | should get the same
MetaObject instanceif | get A.B.C asif | get B.C... evenif A and B are actually instantiated
separately and are therefore different MetaObject instances.

Yes, it'salittle confusing but is easily taken care of with a self-cleaning cache. See the
implementation of MapMetaKit for details.

Page 10

	1 Introduction
	2 PreferencesMetaObject
	2.1 Things to Consider
	2.2 AbstractMetaObject
	2.3 String Properties
	2.4 Non-String Properties
	2.5 MetaObject-based Properties

	3 PreferencesMetaKit
	4 Advanced Types
	5 Additional Future Features
	6 Footnotes

