
Create Meta Object Adapters

Table of contents

1 Introduction..2

2 PreferencesMetaObject.. 2

2.1 Things to Consider.. 2

2.2 AbstractMetaObject...3

2.3 String Properties.. 3

2.4 Non-String Properties..4

2.5 MetaObject-based Properties...5

3 PreferencesMetaKit..7

4 Advanced Types...9

5 Additional Future Features...9

6 Footnotes ...9

Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

1. Introduction

MetaObject adapters are the fundamental building blocks of all things meta. They are
responsible for adapting different types of regular objects to the MetaObject interface.
Meta-JB provides built in adapters for Java beans, standard hashmaps, etc. but it is frequently
necessary to adapt additional object types.

In this How-to I will write a MetaObject implementation for the Java preferences API. This
will involve creating a PreferencesMetaObject to implement the MetaObject interface and a
PreferencesMetaKit to provide more general access to the adapter layer.

2. PreferencesMetaObject

The PreferencesMetaObject will pass any calls to MetaObject.setProperty() and
MetaObject.getProperty() through to the underlying java.util.prefs.Preferences object that it
wraps. The MetaClass will be used as a template for how the types should be stored and
retrieved.

2.1. Things to Consider

The preferences API primarily deals with strings. MetaObjects allow any type of object to be
stored. To properly adapt things we'll need to come up with a way of translating these values
in enough cases to make the utility useful.

Another issue will be nested meta-objects. When a MetaObject has a property that is also a
MetaObject, the underlying values are wrapped and unwrapped as they are retrieved from or
stored into the property. A problem can occur when a MetaClass cannot be easily retrieved
for a raw unwrapped object but it is being stored in a more generic type property. For
example, if Foo extends Bar but the property type can take any Foo. We won't know to create
another Bar when pulling the value back out because the Preferences object doesn't point us
back to the Bar meta-class in any way. An object like a Java bean usually has a direct
relationship to a MetaClass based on its Java type. The only thing we know about a
Preferences object is its location and tying class to location would limit the way the
preferences API could be used through the meta-object.

This is a pretty common issue and usually a combination of object caching and specific
typing solves it. Fortunately, AbstractMetaObject handles most of the caching for us. Any
object that is set into the MetaObject and subsequently unwrapped will be remembered.

Create Meta Object Adapters

Page 2
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

Since preferences are persistent there is the possibility that the PreferencesMetaObject will
need to wrap a Preferences node that it has never seen before. When specific type
information within the containing MetaObject isn't sufficient, we can provide some location
based meta-class resolution using regular expressions or something. Which is perhaps
beyond the scope of this article.

For this article, we'll assume that specific property typing is a sufficient solution.

2.2. AbstractMetaObject

For almost every meta-object implementation, AbstractMetaObject will be the way to go. For
all but the most complicated implementations, it is sufficient to simply override the abstract
setPropertyValue() and getPropertyValue() methods to perform the proper access to the
underlying objects.

2.3. String Properties

To make things simple, we'll start with String based properties since they require no
translation. We'll also skip worrying about the MetaKit implementation at the moment. More
on that later.

So, with that in mind our basic PreferencesMetaObject would look like:

public class PreferencesMetaObject extends AbstractMetaObject
{

private Preferences node;

public PreferencesMetaObject(Preferences node, MetaClass mClass)
{

super(mClass, null);

this.node = node;
}

protected Object setPropertyValue(String name, Object value)
{

// Get the old value to return when we're done
Object oldValue = node.get(name, null);

node.put(name, String.valueOf(value));

return(oldValue);
}

protected Object getPropertyValue(String name)
{

Create Meta Object Adapters

Page 3
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

String value = node.get(name, null);

return(value);
}

public String toString()
{

return(getClass().getName() + "[" + node + "]");
}

}

And that's it. If all you wanted to do was access very flat data structures from a Preferences
node then we would be done. However, we want to really exploit everything we can.

2.4. Non-String Properties

The preferences API supports several additional types of attributes stored on a node:

• Boolean
• Byte Array
• Double
• Float
• Int
• Long

Other than Byte Array these values are pretty easy to support natively since the preferences
API ultimately stores them as strings anyway. This means that we only have to beef up our
getPropertyValue() method a bit.

protected Object getPropertyValue(String name)
{

// Find out what the raw type is
PropertyType type = getMetaClass().getPropertyType(name);
Class base = type.getBaseClass();

// Make sure we handle primitive types as their
// wrapper cousins. int -> Integer, etc..
base = Inspector.translateFromPrimitive(base);

// We use the raw string value to see if the property
// even exists
String value = node.get(name, null);
if(value == null)

return(null);

if(Boolean.class.isAssignableFrom(base))
return(Boolean.valueOf(node.getBoolean(name, false)));

else if(Double.class.isAssignableFrom(base))
return(new Double(node.getDouble(name, 0.0)));

Create Meta Object Adapters

Page 4
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

else if(Float.class.isAssignableFrom(base))
return(new Float(node.getFloat(name, 0.0f)));

else if(Integer.class.isAssignableFrom(base))
return(new Integer(node.getInt(name, 0)));

else if(Long.class.isAssignableFrom(base))
return(new Long(node.getLong(name, 0)));

else if(String.class.isAssignableFrom(base))
return(value);

throw new UnsupportedOperationException("Cannot convert string
to:" + base);

}

And with that we handle all types that a normal preferences node can handle as its attributes.
I'll discuss ways to potentially handle even more complex base types in the
PreferencesMetaKit section. For now, let's figure out how to handle nested meta-object
properties.

2.5. MetaObject-based Properties

A Preferences node can have nested nodes. It would be convenient if we could automatically
wrap these nested nodes in an appropriate meta-class if they represent types that we know
about. It's easy to conceive of how getPropertyValue() might work in this setting... indeed
AbstractMetaObject will even take care of the wrapping for us if we've built a proper
meta-kit.

It's the set operation that is a little tricky in this case. Because of the way that preferences are
accessed, it really isn't possible for a caller to setup a PreferencesMetaObject and then pass it
directly to us... because for it to have a proper Preferences node it would already be our child.

If we're getting a MetaObject from some other implementation layer then it is possible that
we could copy all of the values into a local version. I think this goes beyond the scope of this
particular discussion. Besides, AbstractMetaObject should be handling most of that for us.

In the interest of illustration, I will put some stubs into the setPropertyValue() method to
show how one might deal with this in the normal case.

The stubbed setPropertyValue() method:

protected Object setPropertyValue(String name, Object value)
{

PropertyType type = getMetaClass().getPropertyType(name);
if(type instanceof MetaClassPropertyType)

{
// The object passed in is the already unwrapped
// internal value... in this case a Preferences object.
// Since we can't graft a new node onto the tree then

Create Meta Object Adapters

Page 5
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

// there is really nothing that we can do easily so
// we'll ignore it.
return;
}

// Get the old value to return when we're done
Object oldValue = node.get(name, null);

node.put(name, String.valueOf(value));

return(oldValue);
}

The getPropertyValue() method modified to handle nested meta-objects:

protected Object getPropertyValue(String name)
{

// Find out what the raw type is
PropertyType type = getMetaClass().getPropertyType(name);

if(type instanceof MetaClassPropertyType)
{
// AbstractMetaObject will wrap this for us so our job
// is easy
return(node.node(name));
}

Class base = type.getBaseClass();

// Make sure we handle primitive types as their
// wrapper cousins. int -> Integer, etc..
base = Inspector.translateFromPrimitive(base);

// We use the raw string value to see if the property
// even exists
String value = node.get(name, null);
if(value == null)

return(null);

if(Boolean.class.isAssignableFrom(base))
return(Boolean.valueOf(node.getBoolean(name, false)));

else if(Double.class.isAssignableFrom(base))
return(new Double(node.getDouble(name, 0.0)));

else if(Float.class.isAssignableFrom(base))
return(new Float(node.getFloat(name, 0.0f)));

else if(Integer.class.isAssignableFrom(base))
return(new Integer(node.getInt(name, 0)));

else if(Long.class.isAssignableFrom(base))
return(new Long(node.getLong(name, 0)));

else if(String.class.isAssignableFrom(base))
return(value);

throw new UnsupportedOperationException("Cannot convert string
to:" + base);

Create Meta Object Adapters

Page 6
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

}

And that's all there is to it. Well, except that is will throw a NullPointerException when
actually attempting to access meta-object typed properties. Here is where our null MetaKit
short-cut is coming back to haunt us. The meta-kit is crucial for automatically wrapping and
unwrapping MetaObjects of a particular implementation.

3. PreferencesMetaKit

A MetaKit is what provides access to the non-MetaObject specific parts of an adapter layer.
Today, this mostly includes the ability to wrap and unwrap object values and to otherwise
automatically determine certain things about an object in relation to an adapter layer.

MetaKit method summary:

• getInternalObject() - Unwraps a meta-object and returns its internal real object. In our
case, this would be a Preferences node.

• getMetaClassForObject() - Attempts to find an appropriate MetaClass for a given real
object. Without additional functionality, our meta-kit cannot really answer these
questions.

• wrapObject() - The opposite of getInternalObject(), given a real object it will wrap it in a
MetaObject. Because the MetaClass is provided, our meta-kit can handle this method
even if the result may not be 100% accurate in all cases. (ie: The superclass problem
mentioned before.)

• getMetaObjectFactory() - Provides a factory that can create new instances of a
MetaObject for a given MetaClass. Our meta-kit cannot service these requests.

So, basically, we have to implement the getInternalObject() and wrapObject() methods. I'll
also show how we can partially implement the getMetaClassForObject() method since we'll
have to do some caching of other things anyway.

MetaKits are encouraged to return the same wrapper object for specific real object instances.
In other words, when our PreferencesMetaKit is asked to wrap a Preferences node that we've
wrapped before then we should return the pre-existing MetaObject... assuming the
application is still holding a reference to it somewhere. However, this is not a requirement
and does complicate the code slightly by incorporating a wrapper cache 1. For simplicity, this
meta-kit will not perform that resolution.

Our basic PreferencesMetaKit:

public class PreferencesMetaKit implements MetaKit, Serializable
{

public static final PreferencesMetaKit DEFAULT_KIT = new

Create Meta Object Adapters

Page 7
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

PreferencesMetaKit();

public PreferencesMetaKit()
{
}

public Object getInternalObject(MetaObject object)
{

if(!(object instanceof PreferencesMetaObject))
throw new RuntimeException("Object is not a

PreferencesMetaObject.");

return(((PreferencesMetaObject)object).getPreferencesNode());
}

public MetaClass getMetaClassForObject(Object object,
MetaClassRegistry classRegistry)

{
// We can't determine a type just from the object
return(null);

}

public MetaClass getMetaClassForObject(Object object)
{

// We can't determine a type just from the object
return(null);

}

public MetaObject wrapObject(Object object, MetaClass mClass)
{

if(!(object instanceof Preferences))
throw new RuntimeException("Unabled to wrap non-Preferences

object:" + object);

return(new PreferencesMetaObject((Preferences)object, mClass));
}

public MetaObjectFactory getMetaObjectFactory()
{

return(new PreferencesMetaObjectFactory());
}

private class PreferencesMetaObjectFactory implements MetaObjectFactory
{

public MetaObject createMetaObject(MetaClass type)
{

throw new UnsupportedOperationException("PreferenceMetaObjects
instantiation not supported.");

}
}

}

It's pretty straight-forward. With a few modifications to our PreferencesMetaObject to
support referencing the meta-kit and to allow the kit to pull the preferences node:

Create Meta Object Adapters

Page 8
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

public PreferencesMetaObject(Preferences node, MetaClass mClass)
{

super(mClass, PreferencesMetaKit.DEFAULT_KIT);
this.node = node;

}

protected Preferences getPreferencesNode()
{

return(node);
}

And we're in business. Now a MetaObject hierarchy can be imposed upon a preferences tree
which makes it available to all of the other Meta-JB features.

4. Advanced Types

Here is where I would discuss extending the above to handle list based properties. I'm going
to wait a bit for that.

5. Additional Future Features

• Add an alternate constructor that allows the caller to specify a key in the preferences tree.
This might make it easier to instantiate PreferencesMetaObjects right from XML.

• Support for PropertyInfo default values. It would be easy to retrieve these and pass the
value to the call to the preferences node.

• A key to MetaClass mapping registry for the PreferencesMetaKit so that it could guess at
MetaClasses for different preferences nodes.

6. Footnotes

1:

A MetaKit, when possible, should attempt to return the same MetaObject instance for the
same real object instance. In other words, repeated calls to wrapObject() should return the
same MetaObject instance. The reason for this is simple.

In some underlying implementations the real objects can reference one another. If Object A
references Object C and Object B also references Object C then when possible a similar
MetaObject instance relationship should be maintained so that Object C is always wrapped
by the same MetaObject instance.

In the case of PreferencesMetaKit, it would seem like it isn't specifically necessary. There

Create Meta Object Adapters

Page 9
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

will only be one way to access any given Preferences node from another node. However, if
Object A references Object B which then references Object C then I should get the same
MetaObject instance if I get A.B.C as if I get B.C... even if A and B are actually instantiated
separately and are therefore different MetaObject instances.

Yes, it's a little confusing but is easily taken care of with a self-cleaning cache. See the
implementation of MapMetaKit for details.

Create Meta Object Adapters

Page 10
Copyright © 2005 Paul Speed and the Progeeks Team. All rights reserved.

	1 Introduction
	2 PreferencesMetaObject
	2.1 Things to Consider
	2.2 AbstractMetaObject
	2.3 String Properties
	2.4 Non-String Properties
	2.5 MetaObject-based Properties

	3 PreferencesMetaKit
	4 Advanced Types
	5 Additional Future Features
	6 Footnotes

