Meta-JB - Overview

Table of contents

Meta-JB - Overview

1. What isthis crazy thing?

Let's start with the basics. A Java bean is aregular Java class with a method naming
convention that makes reflection easier. If your class has an attribute named "foo" that is an
integer then to be abean it will have aget Foo() method that returnsi nt . It isthen said to
have aread only bean property named "foo". A writable property would also have a

set Foo(i nt) method.

public class Bar {
private int foo;

public int getFoo() {
return foo;

public void setFoo(int foo) {
this.foo = foo;

Table 1: Example Bean:

Java provides a standard set of utility classes for dealing with these beans

(ava. beans. *). These utility classes use reflection to enable an application to access the
property values by name without making direct method calls. The problem is that this was
not made as straight forward as it sounds.

Java beans seem to have been intended as a way to support drag-and-drop programming. The
idea was that you could run some kind of development tool that would allow you to create
beans and link their event notifications together and form applications from components. In
fact, Java has some classes built into it like Pr oper t yEdi t or Manager and

Propert yEdi t or implementations that help facilitate this. These classes provide atightly
coupled way of finding GUI components that can be used to edit bean properties. My original
framework was based on these classes.

The original framework's goal was to provide GUI generation similar to what these bean
frameworks provided, but with a nicer user and programmer experience.

2. Why would | want to generatea Ul ?

e —
WEell, maybe you wouldn't. However, let's consider the alternatives.

Hand-coding - ahighly repetitive practice. A good developer can

Page 2

Meta-JB - Overview

cabble together excellent GUI s this way, but ends up
rewriting what is essentially the same code, over and
over. And over. This code must aso be maintained.

Furthermore, if even just the label or type of afield
changes, the code must be touched in numerous
places to make the change.

GUI Builder - this simplifies the coding at the expensive of
using tool-generated code that may be
inefficient. Although, the code generation
downsides are minor. This also suffers from
some of the same problems as hard-coding.
Changes to your object schema can require
extensive changes to your Ul. Even adding a
single new class can require alot of rework in
some cases. Any kind of dynamic data types are
probably out of the question.

XML Configuration - this is getting closer to the right idea. Simple
changes are simple to do. The problem is that it
is still tightly coupling the concept of a Ul screen
to an actual data object. Dynamic data types are
still hard to handle and runtime creation or
tailoring of Ul components can be problematic.

Table 1: Conventional Ul creation methods:

A properly abstracted framework will separate the type descriptions from the means by
which they will be displayed. In thisway, an object type description can be used in multiple
Ul formats, for example: a Swing Ul, an HTML page, or writing datato an XML file. Or
even in multiple forms in the same output type such as a single Swing editor panel for one
object or aJTabl e for alist of objects. These are all just different ways of viewing the same
data, they ought to be able to rely on the same data descriptions.

3. Why didn't Java PropertyEditorswork?

In fact, they did. The problem was that they were bulky, bean-specific, and very tied to the
AWT. In order to simply format a property value as a String, it was necessary to instantiate a
PropertyEdi tor.A PropertyEditor isafarly heavy-weight object because it takes
the value out of the bean and sets up its own change notification and such. Way too
expensive just for formatting an object as text.

Also, at the time it seemed like the concept of property descriptions might be applicable to
more than just beans. It aso seemed like more description information could be included.

Page 3

Meta-JB - Overview

Thisiswhat the second version of the framework fixed, but it was a bit kludgy and didn't
really go far enough in the right direction. Additionally, it ended up being tightly couplein
different ways and required extensive custom components to be written for many different
otherwise similar data types.

4. Which brings usto today.

We've abstracted away the bean into ageneric Met aCbj ect . The Met aCbj ect providesa
set Pr opert y method for setting any property value on the object and aget Pr operty
method for retrieving any value from the object. It is completely up to aMet aCbj ect
implementation to decide how these methods actually do their jobs.

public interface Metalhject {
public Object getProperty(String name);

public void setProperty(String nane, Object value);

Table 1. MetaObject method sub-set:

Thelist of properties that a meta-object contains can be retreived from the object's

Met aCl ass. A Met aCl ass isan implementation-independent description of the
properties in an object. This means that the same Met aCl ass can be used for different
Met aObj ect implementations. For example, the same class description could apply to a
bean wrapper, an SQL result set entry wrapper, or a Hashtable wrapper. Aslong as they
supported the meta-class properties.

A Met albj ect implementation for interacting with Java beansisincluded in the core
framework.

The main function of the framework is then to associate property types to various ways of
viewing or setting those property types. Thisis done using registries that map property types
to objects that perform implementation specific rendering or editing for those types.

The simplest display type is formatting an object value as a String. The following example
illustrates string formatting:

public class Exanpl e {

[/l Create a registry mapping property types to fornat
i mpl ement ati ons.
[l A few default format inplenentations are built-in.
private static Format Registry fornmat Regi stry = new Format Regi stry();

public static void printProperty(MetaObject nmetaChject, String
propertyName) {

Page 4

Meta-JB - Overview

[/l Get the type description for the passed property name
PropertyType type = netabject. get Met aC ass() . get PropertyType(
propertyName);

/[l Get an object that will format the value for us based on the
/1 type of the property
PropertyFormat format = fornmat Regi stry. get Format(type);

/| Get the value of the property so that it can be formatted
nj ect val ue = net aCbj ect. get Property(propertyName);

/1 Format the value and print the result
String text = format.format(val ue);
Systemout.println(text);

Table 2: Text formatting example:

This may seem like alot of extrawork to go through just to print an object's String
representation, especially when all objects already haveat oSt ri ng() method. Indeed, the
default Pr oper t yFor mat implementation just callsthet oSt ri ng() method on the
specified object. The problemisthatt oSt ri ng() isnot always the best way to convert an
object to astring. It may also be important to format the object a different way depending on
context.

The format registry allows the application to define custom format implementations. For
example, a custom format object may convert Col or objectsinto a hexidecimal RGB value
instead of the debug-friendly output normally expected. Another example might be
formatting lists of values into new-line separated strings instead of the comma-separated way
that Ar r ayLi st uses. The nicething isthat the code doing the formatting doesn't need to
care about this.

Thisisthe basic idea behind the entire framework. Decouple how the data is displayed from
the code that is actually asking the data to be displayed.

5. The Swing Toolkit
e —

One of the view toolkits available is the swing toolkit. This toolkit allows Uls to be generated
at runtime for any MetaObject.

public class Exanmpl e {

[/l Create a registry containing Sw ng conponent factories

/[l for creating editors or renderers for property val ues and
/1 neta-objects. WMany default factories are built-in.
private static FactoryRegi stry sw ngFactori es = new

Page 5

Meta-JB - Overview

Fact oryRegi stry();

/**
* This method returns a U conponent for rendering the specified
* neta-object property. |If the value of the property changes the
* U conponent will automatically update its display.
*/

public static Conponent get Renderer Conmponent (Met aCbj ect net aCbj ect,
String propertyNane) {

[/l Get the type description for the passed property name
PropertyType type = netabj ect. get Met adl ass() . get PropertyType(
propertyNanme);

[l Create an object that will keep track of the property val ue
/1 and provide us with a U component that displays it.
Met aPr opert yRenderer renderer =

swi ngFact ori es. creat ePropertyRenderer(type);

/!l Retrieve the property fromthe neta-object as a nutable
si ngl e- val ued

/] object that will automatically update the property in the
met a- obj ect .

PropertyMitator nutator = metaCbject. getPropertyMit at or (
propertyNanme);

/1 Associate the value with the renderer
renderer. set PropertyMiutator(mnmutator);

/1 Return the display conponent
return renderer.get U Conponent () ;

Table 1: Simple Swing toolkit example:

The above example will return a component that will display asingle property value. If the
property value changes then the display will aso change. The calling code doesn't need to
worry about how the value is displayed. The application can customize this behavior or rely
on the built-in implementations. A property containing a Col or may be rendered asasingle
block of color while a property containing a Doubl e may render as alabel displaying the
double value formatted to two decimal places. Even a property containing another
MetaObject can be rendered. In fact, convenience methods are provided for rendering a
single meta-object this way.

public class Exanpl e {

/[l Create a registry containing Sw ng conponent factories

[/l for creating editors or renderers for property val ues and
/1 neta-objects. WMany default factories are built-in.
private static FactoryRegi stry swi ngFactories = new

Page 6

Meta-JB - Overview

Fact oryRegi stry();

/**
* This method returns a U conponent for rendering the specified
* neta-object property. |If the value of the property changes the

* U conponent will automatically update its display.
*/
public static Conmponent getMetaObj ect Conponent (Met aCbj ect net aCbj ect
) {

[l Get the appropriate meta-object renderer based on the

/] meta-class.

Met aCl ass net aCl ass = nmet albj ect . get Met adl ass() ;

Met aCbj ect Ul renderer = sw ngFactories. creat eMet albj ect Render er (
met adl ass) ;

[l Tell the renderer which object it is viewng
render er. set Met aChj ect (nmet aChj ect) ;

/! Return the display conponent
return renderer.get U Conponent () ;

Table 2: Swing toolkit MetaObject component example:

The examples above can easily be changed to create editor components instead. Also, the
above examples do thingsin a very straight forward way which is not necessarily the best
way for every application. For example, it is not necessary to create a new MetaObject
renderer/editor every timeif the application is only displaying one component at a time
anyway. A MetaObjectUI instance can be reused to display a different meta-object of the
same meta-class in the same previously returned Ul component.

6. Conclusion

Meta-JB provides a generic bean-like abstraction that can be adapted to any object
implementation that has the concept of fields and values. Upon this framework, toolkits are
built to generate different types of views without being coupled to the actual data
implementation.

For additional working examples, download the examples distibution.

Page 7

	1 What is this crazy thing?
	2 Why would I want to generate a UI?
	3 Why didn't Java PropertyEditors work?
	4 Which brings us to today.
	5 The Swing Toolkit
	6 Conclusion

